
Techniques for developing and testing
secure software components

Jan Tobias Mühlberg
jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

SecAppDev, Leuven, February 2019

jantobias.muehlberg@cs.kuleuven.be

empty

Lecturer: Jan Tobias Mühlberg, @jtmuehlberg

Short Bio:
• Research Manager at imec-DistriNet, KU Leuven
https://distrinet.cs.kuleuven.be/people/muehlber

• Hardware & Software Co-Design for Security
• Embedded Systems Security
• Secure Processors & Trusted Computing
• Automated Software Testing and Formal Verification
• Safety-Critical Systems, Automotive Computing

2 /42 Jan Tobias Mühlberg Developing and testing secure software

@jtmuehlberg
https://distrinet.cs.kuleuven.be/people/muehlber

empty

Automated Detection and Prevention of Vulnerabilities

Frank Piessens: “New trends in system software security”

JT on Tuesday: Developing and testing SW
1 Software security for the bad guys

Lazy ways of finding and exploiting software vulnerabilities
2 How to build “perfect software”

Probably there is no such thing; but let’s rule out as many vulnerabilities as
possible and affordable

JT on Thursday: Trusted Computing
3 How to protect perfect software at runtime

. . . because not having vulnerabilities in your code may not be enough
4 Building security into distributed systems

Raoul Strackx: “Foreshadow – from oversight to a tech nightmare”

3 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Software security for the bad guys

You want to “hack” an application!
Stand-alone or client software on a device you
control, you have (at least) the compiled binary.

Goals: Hard-coded secrets? Application flags/
enable features? Disable adds? Access or modify
application data? Understand remote communication?
Find and weaponize a vulnerability?

What’s your approach?

4 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Software security for the bad guys
Option 1: Reversing, search manually

• IDA, debugger, decompiler, experience, luck,
brain cycles

• You’ll learn a lot about the program
• You may not find what you’re looking for
• Can be entertaining, can be a big waste of time

Option 2: Fuzzing, automated search
• Clever fuzzing software, little experience, CPU cycles
• You won’t learn that much but you’ll probably

get crashes almost for free
• May be easily thwarted by anti-debugging techniques

Option 3: Combine manual reversing and fuzzing
• . . .

5 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 1: Reversing, search manually
/* stack1.c; https://github.com/gerasdf/InsecureProgramming */

#include <stdio.h>

int main() {
int cookie;
char buf[80];

printf("buf: %08x cookie: %08x\n", &buf, &cookie);
gets(buf);

if (cookie == 0x41424344) {
printf("you win!\n");

}
}

Task: Compile and exploit to get “you win!”. Manually!
src: stack1.c; bin: stack1.gcc

6 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 1: Reversing, search manually
Only today: You have source code. It’s ok to “instrument” the code a bit to get
extra information about your progress. The value of “cookie” could be useful.

#include <stdio.h>

int main() {
int cookie;
char buf[80];

printf("&buf: %08x &cookie: %08x\n", &buf, &cookie);
gets(buf);

if (cookie == 0x41424344) {
printf("you win!\n");

}

printf("cookie: %08x\n", cookie);
}

7 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 1: Reversing, search manually

Solution

$ perl -e 'print "A"x80 . "DCBA";' | ./stack1.gcc

&buf: 11ff71f0 &cookie: 11ff724c
cookie: 00000000

Hu?! 0x00000000?!

$ perl -e 'print "A"x100 . "DCBA";' | ./stack1.gcc
&buf: 6f65f350 &cookie: 6f65f3ac
cookie: 41414141
Segmentation fault

Ah! But why? Crash after last printf()? &buf and &cookie changed?

8 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 1: Reversing, search manually

Solution (cont’d)

$ perl -e 'print "A"x90 . "DCBA";' | ./stack1.gcc
&buf: 10f732d0 &cookie: 10f7332c
cookie: 00004142

Ok, done.

$ perl -e 'print "A"x92 . "DCBA";' | ./stack1.gcc
&buf: 816fb9c0 &cookie: 816fba1c
you win!
cookie: 41424344

Now let’s automate this: fuzzing the input with AFL.

9 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

Can we crash it automatically with AFL [Zal10]?

Compile the Target

$ afl-2.52b/afl-gcc -std=c99 -ggdb stack1.c -o stack1.afl
$ ls -l
-rwxr-xr-x 1 muehlber muehlber 16888 Nov 3 10:24 stack1.afl
-rwxr-xr-x 1 muehlber muehlber 11232 Nov 1 16:11 stack1.gcc

afl-gcc instruments the target code to measure coverage, observe conditionals,
and to improve detection of vulnerabilities.

10 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

Running the Fuzzer

fuzzing programs that accept input on std-in
$ afl-2.52b/afl-fuzz -i testcase_dir -o findings_dir \
/path/to/program [...params...]

fuzzing programs that accept file name parameters
$ afl-2.52b/afl-fuzz -i testcase_dir -o findings_dir \
/path/to/program [...params...] @@

You will often have to write a “test harness” to transform an input file into the right
structured input (e.g. simulate a network packet, a sequence of packets, . . .) for
your target.

11 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

Fuzzing stack1.afl

$ mkdir -p in
$ mkdir -p out
$ echo "test string" >in/seed001
$ AFL_SKIP_CPUFREQ=1 \
afl-2.52b/afl-fuzz -i in -o out -- ./stack1.afl

Interrupt with Ctrl+C. You decide when.

12 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

13 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

Inspecting the results

$ ls out
crashes fuzz_bitmap fuzzer_stats hangs plot_data queue
$ ls out/crashes/
id:000000,sig:11,src:000000,op:havoc,rep:128 README.txt

. . . and replay them!

$./stack1.afl < out/crashes/id\:000000*
&buf: 75586e80 &cookie: 75586e7c
Segmentation fault
$./stack1.gcc < out/crashes/id\:000000*
&buf: 59f43230 &cookie: 59f4328c
cookie: ff05eeee
Segmentation fault

14 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

But what about “You win?”

• AFL explored only one program path!
• Is the true branch of if (cookie == 0x41424344) even reachable?

$ perl -e 'print "A"x92 . "DCBA";' | ./stack1.afl
buf: dea0ed10 cookie: dea0ed0c
Segmentation fault

• Instrumentation make fuzzing fast but change execution semantics!
• Still: You found the vulnerability.
• Automatic exploits require different tools: QEMU AFL

15 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

• Can we crash it: AFL [Zal10]
• Find an input that reproducibly leads

to SIGSEGV, SIGILL, SIGABRT
• This a library function, we can build

our own “client” as a test harness:
int main(int c, char* v[]) {
struct rrec r; struct SSL3 s3;
struct SSL s;
if (c >= 2)

read_in(v[1], &r);
s.s3 = &s3; s3.rrec = r;
return tls1_process_heartbeat(&s);

}

• Provide a seed test case “_ _ _ _”
• Compile with instrumentation, run in AFL

16 /42 Jan Tobias Mühlberg Developing and testing secure software

int tls1_process_heartbeat (SSL *s) {
unsigned char *p = s->s3->rrec.data;
// ...
hbtype = *p; p++;
n2s(p, payload); pl = p;
if (hbtype == TLS1_HB_REQUEST) {
unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ... } ... }

empty

Option 2: Fuzzing, automated search

• Test case for a crash within one
second: 0x20 0x64 0x20 0x20

• Severity as a vulnerability depends
on executing context and skill of the
attacker

But what happened?
1 Take next test case from queue
2 Trim the test case to the smallest size

that does not alter testee’s behavior,
3 Repeatedly mutate the test case,
4 If any of the generated mutations

results in a new state transition, add it to the queue,
5 Go to 1.

17 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Option 2: Fuzzing, automated search

18 /42 Jan Tobias Mühlberg Developing and testing secure software

int tls1_process_heartbeat (SSL *s) {
unsigned char *p = s->s3->rrec.data;
// ...
hbtype = *p; p++;
n2s(p, payload); pl = p;
if (hbtype == TLS1_HB_REQUEST) {
unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ... } ... }
Source: https://xkcd.com/1354/

https://xkcd.com/1354/

empty

Option 2: Fuzzing, automated search

18 /42 Jan Tobias Mühlberg Developing and testing secure software

int tls1_process_heartbeat (SSL *s) {
unsigned char *p = s->s3->rrec.data;
// ...
hbtype = *p; p++;
n2s(p, payload); pl = p;
if (hbtype == TLS1_HB_REQUEST) {
unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ... } ... }
Source: https://xkcd.com/1354/

https://xkcd.com/1354/

empty

But . . .

But it’s a known vulnerability, extracted, simplified, . . .
Yes, that’s why it took only 1s.

But the input was really simple!
AFL pulls compressed multimedia files out of thin air. Also, there are specialised
tools for network traffic, HW interactions, video streams. Problem: Crypto.

But you instrumented source code! We ship only binaries!
QEMU mode! What about your libraries?

But we also obfuscate them! And there’s an obscure interpreter in there!
Does it still execute? Let’s wait it out. Problem: Opaque predicate.

But we have anti-debugging! And the red stuff above!
Fuzzing coverage will reveal dead ends, which can be resolved manually.

Any vulnerability can be found. Understand your system,
your assets, your attacker→ Threat Modelling

19 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

My Personal Fuzzing Surprise

“VulCAN: Efficient Component Authentication and Software Isolation for
Automotive Control Networks”, Van Bulck et al., ACSAC 2017. [VBMP17]

20 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Software security for application developers

How can we defend applications against fuzzing?
How can we defend against people with reverse engineering skills?

Fuzz harder?
Fuzz more cleverly?
Hire a bad guy and ask him
to do good stuff?

Testing?
Buy an insurance?
Penetration testing?
Formal verification?

Under what attacker model can we say that a thoroughly tested
or formally verified application is secure?

21 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

How much testing do we have to do? When are we done?
• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .
22 /42 Jan Tobias Mühlberg Developing and testing secure software

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

How much testing do we have to do? When are we done?
• Which criterion is best?
• What about code that

doesn’t branch?
• What about code that

is stimulated by I/O?
• . . . in scenarios that

you can’t set up in the lab
(Delta Works, SDI, Space)?

• How do we know that we
haven’t missed critical
interactions?
Concurrency?

• Who writes all these tests?
• What about security

properties?

23 /42 Jan Tobias Mühlberg Developing and testing secure software

int tls1_process_heartbeat (SSL *s) {
unsigned char *p = s->s3->rrec.data;
// ...
hbtype = *p; p++;
n2s(p, payload); pl = p;
if (hbtype == TLS1_HB_REQUEST) {
unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ... } ... }

empty

How much testing do we have to do? When are we done?
Life-critical, Safety-critical, Ultra-reliable

• 10−9 probability of failure for a 1 hour mission
→ life-test for > 114,000 years (safety!)

Not Just Space Tech!

24 /42 Jan Tobias Mühlberg Developing and testing secure software

Image: NASA, STS-132; FM @ NASA: https://shemesh.larc.nasa.gov/fm/fm-why.html

https://shemesh.larc.nasa.gov/fm/fm-why.html

empty

25 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

How much testing do we have to do? When are we done?

“We’re building self-driving cars and planning Mars
missions – but we haven’t figured out how to make sure

people’s vacuum cleaners don’t join botnets.”

– Someone at JSConfAU16

26 /42 Jan Tobias Mühlberg Developing and testing secure software

Source: https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09

https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09

empty

Between Testing and Formal Verification

Testing Formal Verification

• Find as many defects as
reasonably possible

Use mathematical methods to
convincingly argue that a system
is free of defects

• Gather evidence to show that a
specification is correctly implemented

Prove that implementation is a
refinement of the specification

• Relies on empirical evidence
and intuition

Aims to be exhaustive and
complete

• Expensive Expensive

27 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

28 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Normal Execution vs. Symbolic Execution
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output (unit tests, etc.)

29 /42 Jan Tobias Mühlberg Developing and testing secure software

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

Symbolic Execution (with Microsoft Z3)
Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a “constraint solver” to find concrete inputs that satisfy
a specific path.

(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))

(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

.

29 /42 Jan Tobias Mühlberg Developing and testing secure software

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a “constraint solver” to find concrete inputs that satisfy
a specific path.

(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)
(push)
(assert (and (or a b) c))
(check-sat)(get-model)
(pop)
(assert (not

(and (or a b) c)))
(check-sat)(get-model)

-> sat
-> (model
(define-fun c () Bool false))

29 /42 Jan Tobias Mühlberg Developing and testing secure software

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

30 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

31 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific test case.

VeriFast is automatic, complete and sound, and supports concurrency: Pre- and
post conditions must be satisfied for all executions

Static verification, no runtime overhead.

Writing pre- and post conditions isn’t easy. You may need a lot of annotations –
depending on program complexity and verification properties.

You are verifying one part of an application at the level of abstraction provided by
C or Java.

• Layer-below attacks? Compilation errors?
• Buggy or malicious libraries (not behaving to spec)?
• Buggy OS? Kernel-level malware?

32 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Between Testing and Formal Verification

33 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

KLEE (Stanford, [CDE+08])
KLEE is a symbolic virtual machine built on top of LLVM

• No annotations but symbolic test cases
• Support for symbolic arguments, files and streams
• Exploration can be bounded wrt. input sizes, memory and CPU consumption

int main(void) {
bool a, b, c;
klee_make_symbolic(

&a, sizeof(a), "a");
// same for b and c
return (foo(a, b, c));

}

• Combines concrete with symbolic execution!
• Bug reports or crashes reported with real program inputs
• Achieve ≥ 90% coverage

34 /42 Jan Tobias Mühlberg Developing and testing secure software

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

Symbolic Execution in Attacks
Some techniques work on binary programs, in the
absence of source code.
AFL [Zal10], SAGE [GLM08], SOCA [ML10], etc.

Automated Crash Generation
. . . search for paths where a well-chosen input leads to
undefined behaviour or unhandled exceptions.
You have seen this for AFL.

Automated Exploit Generation
. . . as above, but find exploitable behaviour and
derive a “crazy machine” to execute code:

• Patch-based exploit generation [BPSZ08]
• Crash analysis and exploit generation [HHH+14]
• End-to-end solutions to generate zero-days [ACR+14]

35 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Other Tools

MS PEX . . . automatically generates test suites to achieve high code coverage in .NET
in a short amount of time [TdH08].

Facebook Infer is a static analysis tool - if you give Infer some Java or
C/C++/Objective-C code it produces a list of potential bugs.
http://fbinfer.com/

CBMC . . . is a Bounded Model Checker for C and C++ programs. CBMC verifies
array bounds (buffer overflows), pointer safety, exceptions and user-specified
assertions.
http://www.cprover.org/cbmc/

. . . is a verification tool for ANSI-C and C++ programs. SATABS transforms a
C/C++ program into a Boolean program, which is an abstraction of the original
program in order to handle large amounts of code.
http://www.cprover.org/satabs/

36 /42 Jan Tobias Mühlberg Developing and testing secure software

http://fbinfer.com/
http://www.cprover.org/cbmc/
http://www.cprover.org/satabs/

empty

Key Reinstallation Attacks
Breaking WPA2 by forcing nonce reuse: “The

attack works against all modern protected Wi-Fi networks.
[. . .] if your device supports Wi-Fi, it is most likely affected.”

Analysis
• Problem in IEEE 802.11i (2004)
• Formal security properties by He et al. [HSD+05]
• Crypto in Wi-Fi are highly secure (iff secure nonces)

What went wrong?
• Two “unit proofs”, no “integration proof”
→ Formal correctness of protocols in integrated scenarios!
→ Correct implementations (verified and tested)

• That’s expensive! As compared to what?

37 /42 Jan Tobias Mühlberg Developing and testing secure software

Discovered by Mathy Vanhoef at imec-DistriNet, https://www.krackattacks.com/, paper at CCS (November 2017)
Discussion of verification efforts by Matthew Green, https://blog.cryptographyengineering.com/

https://www.krackattacks.com/
https://blog.cryptographyengineering.com/

empty

Preventing Vulnerabilities Through Testing and Verification
Modern (embedded) software systems are huge!

• Interactions with
safety-critical
components not
well defined

• There are bugs in
established standards
and well-tested code

• Formal analysis and
verification reduces
the chance for bugs
to slip through

• Don’t forget to
isolate critical code!

38 /42 Jan Tobias Mühlberg Developing and testing secure software

Image: Thomas Kallstenius @ imec ITF, May 2017

empty

Summary

Fuzzing, Testing & Formal Verification
1 There are automated techniques to find

vulnerabilities and to generate exploits
2 Securing application code requires dedicated

testing and verification
3 Know your system, be selective
4 Correct code still needs protection against

layer-below attacks!

My next session: Trusted Computing & Sancus
1 Strong application isolation and attestation
2 Requires correct hardware and software

39 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

Thank you!

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

– Donald Knuth

Thank you! Questions?

https://distrinet.cs.kuleuven.be/

40 /42 Jan Tobias Mühlberg Developing and testing secure software

https://distrinet.cs.kuleuven.be/

empty

References I
T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brumley.
Automatic exploit generation.
Commun. ACM, 57(2):74–84, 2014.

D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possible: Techniques and implications.
In 2008 IEEE Symposium on Security and Privacy (S&P 2008), pp. 143–157, 2008.

C. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs.
In OSDI, vol. 8, pp. 209–224, 2008.

P. Godefroid, M. Y. Levin, and D. Molnar.
Automated whitebox fuzz testing.
In NDSS ’08. Internet Society (ISOC), 2008.

S. K. Huang, M. H. Huang, P. Y. Huang, H. L. Lu, and C. W. Lai.
Software crash analysis for automatic exploit generation on binary programs.
IEEE Transactions on Reliability, 63(1):270–289, 2014.

C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell.
A modular correctness proof of ieee 802.11i and tls.
In Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS ’05, pp. 2–15, New York, NY, USA, 2005. ACM.

B. Jacobs, J. Smans, and F. Piessens.
VeriFast: Imperative programs as proofs.
In VSTTE 2010 workshop proceedings, pp. 63–72, 2010.

41 /42 Jan Tobias Mühlberg Developing and testing secure software

empty

References II

J. T. Mühlberg and G. Lüttgen.
Symbolic object code analysis.
In SPIN ’10, vol. 6349 of LNCS, pp. 4–21, Heidelberg, 2010. Springer.

P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and F. Piessens.
Software verification with VeriFast: Industrial case studies.
Science of Computer Programming (SCP), 82:77–97, 2014.

N. Tillmann and J. de Halleux.
Pex – White Box Test Generation for .NET, pp. 134–153.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

J. Van Bulck, J. T. Mühlberg, and F. Piessens.
VulCAN: Efficient component authentication and software isolation for automotive control networks.
In ACSAC ’17, pp. 225–237. ACM, 2017.

M. Zalewski.
American Fuzzy Lop: A security-oriented fuzzer, 2010.
http://lcamtuf.coredump.cx/afl/.

42 /42 Jan Tobias Mühlberg Developing and testing secure software

http://lcamtuf.coredump.cx/afl/

